
 

 
 

 
 
 
 
 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

 
 
 
 
 
 
 
 

A White Paper prepared for
Asian School of Cyber Laws

www.asianlaws.org

Tech Juris  
The Technology Lawyers 
www.techjuris.com  
 

The Blowfish algorithm 

ASCL-WP-IS-Tec-Algo-03 

ASCL White Papers can be downloaded from: 
www.asianlaws.org/whitepapers 

Tech  JurisJuris 



  Tech Tech Juris 

© 2002 Asian School of Cyber Laws. All rights reserved.                                            1

Asian School of Cyber Laws
ASCL-WP-IS-Tec-Algo-03

 
The Blowfish program was developed by author and computer security and cryptography 
consultant Bruce Schneier. Blowfish is a cipher based on Feistel rounds, and the design of the 
f-function used amounts to a simplification of the principles used in DES to provide the same 
security with greater speed and efficiency in software. The block ciphers Khafre and CAST 
have somewhat similar rounds. 
 
The main claim to fame of Blowfish, however, is its method of key scheduling. The round 
keys, and the entire contents of all the S-boxes, are created by multiple iterations of the block 
cipher. This enhances the security of the block cipher, since it makes exhaustive search of the 
keyspace very difficult, even for short keys. 
 
Description of Blowfish 
 
Unlike DES, Blowfish applies the f-function to the left half of the block, obtaining a result 
XORed to the right half of the block. This departure from convention may cause confusion in 
reading the description of Blowfish. However, upon further reflection, it is really DES that is 
creating confusion; the time sequence of events should move from left to right (particularly in 
a design that is otherwise big-endian); this is generally what happens in more recent designs, 
such as the AES candidates, and particularly in ciphers with unbalanced Feistel rounds. 
 
Blowfish consists of sixteen rounds. For each round, first XOR the left half of the block with 
the sub key for that round. Then apply the f-function to the left half of the block, and XOR 
the right half of the block with the result. Finally, after all but the last round, swap the halves 
of the block. There is only one sub key for each round; the f-function consumes no sub keys, 
but uses S-boxes, which are key dependent. 
 
After the last round, XOR the right half with subkey 17, and the left half with subkey 18. 
 
The f-function 
 
Blowfish uses four S-boxes. Each one has 256 entries, and each of the entries is 32 bits long. 
To calculate the f-function: use the first byte of the 32 bits of input to find an entry in the first 
S-box, the second byte to find an entry in the second S-box, and so on. The value of the f-
function is (S1(B1) + S2(B2)) XOR (S3(B3) + S4(B4)) where addition is performed modulo 
2^32. 
 
Decryption 
 
Decryption is the same as encryption, with the 18 sub keys used in reverse order. At first, this 
seems unbelievable (although not quite as bad as understanding the                                                                                                                                                              
decryption of IDEA), because there are two XOR operations following the last use of the f-
function, and only one preceding the first use of the f-function.  
 
 



  Tech Tech Juris 

© 2002 Asian School of Cyber Laws. All rights reserved.                                            2

Asian School of Cyber Laws
ASCL-WP-IS-Tec-Algo-03

 
 
However, if you modify the algorithm so that use of sub keys 2 through 17 takes place before 
the output of the f-function is XORed to the right half of the block, and is done to the same 
data before that XOR, although that means it is now on the right half of the block, since the 
XOR of the sub key has been moved before a swap of the halves of the block, you have not 
actually changed anything since the same information is XORed to the left half of the block 
between each time it is used as input to the f-function.  
 
In fact, you can even move the XOR still earlier, before the preceding swap of block halves. 
Once you do that, you have the exact reverse of the decryption sequence. 
 
Sub key generation 
 
Begin by initializing sub keys 1 through 18, followed by elements zero through 255 of the 
first S box, then elements zero through 255 of the second S box, all the way to element 255 of 
the fourth S box, with the fractional part of pi. The most significant bit of the fractional part 
of pi becomes the most significant bit of the first sub key. 
 
Then, take the key, which may be of any length up to 72 bytes, and, repeating it as often as 
necessary to span the entire array of 18 sub keys, XOR it with the sub key array contents. 
Then execute the Blowfish algorithm repeatedly, with an initial input of a 64-byte block of all 
zeroes as plaintext input. After each execution, replace part of the sub keys or S boxes with 
the successive outputs of Blowfish, in the same order as the digits of pi in binary (or 
hexadecimal) form were placed in them; after the first iteration, replace sub keys 1 and 2; 
after the tenth iteration, replace the first two entries (0 and 1) in S-box 1; and so on.  
 
For each iteration of Blowfish in key generation, also use the output of the preceding iteration 
as input. (The original description of Blowfish in the April 1994 issue of Dr. Dobb's Journal 
could be interpreted to imply that zero should be used as input for every iteration. As the later 
iterations only change individual S-box entries, this could lead to large stretches of identical 
data in the S-boxes, and is thus a misreading of the directions, not a slightly different original 
form of the algorithm.) 
 
Thus, loading Blowfish with a new key takes as much time as encrypting 521 blocks 
((256*4+18)/2) in Blowfish. This gives Blowfish an extra 9 bits of security against a brute 
force search for keys shorter than maximum length, which makes the 32-bit, instead of 40-bit 
limit for export versions of Blowfish reported by one individual, just about exactly right.  
 



  

Asian School  
of Cyber Laws  

 
Pune | Bangalore | Kolkata | Nagpur 

 
OUR SERVICES 

 
Information Security 
 

• Training  
• Consultancy  
 

• White papers  
• Workshops 

 
Technology Law 
 
We provide training, consultancy, workshops, and white papers in the following areas 
of law: 
 

• Media Laws  
• Semi-conductor Law  
• Intellectual Property Law  
• PKI Law  
• Cyber Law  
 

• Drafting  
• Software valuation  
• Audits  
• Arbitration 
• E-contracts  

 
In addition, we conduct a Diploma course in Information Technology Law. 
 
Cyber Crime Investigation 

 
• Training 
• Consultancy  
• Search and seizure operations 

• White papers  
• Certified Courses  

 
 

CONTACT US 
 

Regd. Office 
 
6, Rajas, Above IDBI, Pashan Road, Pune 411008 
Ph: 91 20 5890894 / 95 
Fax: 91 20 5675600 
 
Email: info@asianlaws.org 
URL: www.asianlaws.org 
 
 
 
 
 

This White Paper is provided for general information only. Neither Asian School of Cyber Laws (ASCL) 
nor Tech Juris (TJ) makes any warranty, express or implied, to the accuracy of the contents of these White 
Papers. Although all reasonable care and caution is taken while preparing these White Papers, errors and 
omissions may occur and neither ASCL not TJ will be liable for any direct, indirect, special, incidental or 
consequential damages or loss (including damages for loss of business, loss of profits, or the like) arising 
directly or indirectly from the use of information contained in this White Paper.   


